
  

 

Abstract—In this paper, an autonomous vision-based system 

was developed to control a wheelchair mounted robotic 

manipulator (WMRM). Two 3D cameras were applied for 

object and body part recognition (face and hands) of the 

wheelchair user. Two human robot interface modalities were 

used to control the WMRM: voice and gesture recognition. 

Daily objects were automatically recognized by employing a 

two-step process: 1) using Histogram of Oriented Gradients 

(HOG) algorithm to extract the feature vector for each detected 

object; 2) applying nonlinear support vector machine (SVM) 

algorithm to train the model and classify the objects. Four 

simulated tasks for daily objects delivery and retrieval were 

designed to test the validity of the proposed system. The results 

demonstrated that the automatic control requires significantly 

fewer time than the predefined control for phone calling and 

photography tasks (P = 0.015, P = 0.035), respectively. The 

gesture modality outperforms the voice control for the drinking 

and phone calling tasks (P = 0.016, P = 0.015), respectively. 

I. INTRODUCTION 

The advancement of assistive robotics facilitates the 
development of wheelchair mounted robotic manipulators 
(WMRMs) for people with disabilities (PWDs). These 
WMRMs worked in close proximity to PWDs to assist with 
Activities of Daily Living (ADL), such as dressing, feeding, 
and objects retrieval and delivery. WMRMs improve the 
accessibility of surroundings for PWDs and enhance their 
independence [1].  

Previous research has shown that a WMRM system is 

beneficial to individuals with mobility impairments, such as 

spinal cord injury (SCI) [2] and Cerebral Palsy [3]. An 

intelligent assistive robotic manipulator system named UCF-

MANUS was developed by Kim et al. [4] for users with a 

wide range of disabilities. Essential to this system and other 

WMRMs is to integrate computer vision to recognize daily 

objects. For example, Fence et al. [5] applied a monocular 

camera for object recognition using scale invariant feature 

transform (SIFT) to control a 7-degree of freedom (DoF) 

robotic arm. The parts of the body of the operator were also 

recognized to assist in automating daily tasks. Tanaka et al. 

[6] developed an assistive WMRM to grasp a cup and bring it 

to the user’s mouth with the help of two cameras (one is used 

                                                           
* This research is supported by the State of Indiana to the Center for 

Paralysis Research. 

H. Jiang, T. Zhang, and J. P. Wachs are with the School of Industrial 

Engineering, Purdue University, West Lafayette, IN 47907 USA (e-mail: 
jiang115@purdue.edu,  zhan1013@purdue.edu,  jpwachs@purdue.edu). 

B. S. Duerstock is with the Weldon School of Biomedical Engineering 

and School of Industrial Engineering, Purdue University, West Lafayette, 
IN 47906 USA (765-496-2364; e-mail: bsd@purdue.edu). 

to recognize the objects and the other is used to recognize the 

user’s face) in the robotic arm’s hand.  

Recently, the availability of commercial WMRMs has 

increased. For example, JACO robotic manipulator produced 

by Kinova® and Cyton Gamma 1500 [7] developed by 

ROBAI® (a lightweight 7-DoF robotic arm) are designed to 

be mounted on the wheelchair and help users with upper 

limb impairments with instrumental and basic ADLs [8].  
Previous studies on human robot interfaces (HRIs) for 

robotic manipulator control were based on different input 
modalities. For instance, Pathirage et al., [9] developed a 
vision-based Brain Computer Interface (BCI) to grasp objects 
using a WMRM. The patients with tetraplegia were trained to 
voluntarily modulate electroencephalogram (EEG) signals to 
send commands to a WMRM. Three modalities were adopted 
in the WMRM system presented by Kim et al. including 
joystick, touchscreen, and BCI [4]. Other control modalities 
for the WMRM systems consist of speech recognition [10], 
head movement and facial expression [11], hand gestures 
[12], EEG signals [13], and a 3-D controller [14].  

Our previous work consists of designing a gesture 
recognition-based interface for quadriplegic individuals due 
to SCI [12] and developing a prototype vision-based WMRM 
system (with manual and semi-automatic control mode) 
combining hand gestural control and automatic user face and 
object detection for quickly retrieving everyday objects for 
use [15]. The drawback of the previous developed system 
was that it required the user to manually control the robotic 
arm to perform fine movements when grasping an object.  

In this paper, we extend the functionality and robustness 
of the object recognition algorithm, the HRI modalities we 
test, and the robotic control policy used. Integrated computer 
vision algorithms are applied to detect, recognition, and grasp 
objects automatically. The human body parts (face and 
hands) are tracked to facilitate objects positioning. 
Additionally, approximation signals from the smartphone are 
used to provide feedback for the users’ safety and tasks’ 
efficiency. Moreover, the system was tested with more 
complex, multistep tasks to simulate real-world needs. 

II. SYSTEM ARCHITECTURE  

The architecture of this prototype system is illustrated in 

Fig. 1. The computer vision-based WMRM system includes 

five modules: (A) user interface with gesture and speech 

control, (B) automatic object recognition, (C) human body 

part recognition, (D) object sensors, and (E) the robotic arm 

control module. Four multistep tasks were designed to test 

this system: drinking, phone calling, taking a self-portrait or 

‘selfie’ photograph, and typical picture taking. 
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A. User Interface Module 

The target population of this WMRM system is users with 
upper extremity mobility impairments who lack fine motor 
skills. The commonly used input modalities, such as 
keyboard, joystick, and touchscreen, require the users to 
make fine motor movements and physically contact these 
interfaces. This can be difficult for quadriplegics with severe 
disabilities, thus they were not selected [14]. Two control 
modalities were adopted: 1) gesture recognition based 
interface and 2) speech recognition based interface.  

The gesture recognition based interface consists of three 
parts: foreground segmentation, hand detection and tracking, 
and trajectory recognition. A detailed description can be 
referred to [12]. In the foreground segmentation stage, two 
steps were applied to segment the human body and its 
connected components as the foreground. The first step 
consists of thresholding the depth image (acquired from a 
Kinect camera) using two thresholds (    and    ).     and 
    are the high and low thresholds for depth value, 
respectively [12]. A binary mask image is then generated 
with each pixel’s depth between     and    . The largest 
blob in the binary mask is extracted as the foreground and all 
the remaining blobs are removed.  In the hand detection 
stage, a face detector and a skin color detector is applied to 
detect the face and both hands from the foreground. A 
particle filter framework incorporating motion and spatial 
information is applied to track the hands (Fig. 1-C). In the 
recognition stage, the hand trajectories are recognized by the 
CONDENSATION algorithm. The state S at time t was 
extended to recognition two hands’ trajectories (Eq. 1)  

           (   
       )  (                                        )    (1) 

where, μ is the index of the motion models, ϕ is the current 
phase in the model, α is an amplitude scaling factor, ρ is a 
time dimension scaling factor, i equals to right hand, or left 
hand. An eight-gesture lexicon was adopted for this gesture 
recognition based interface to control the WMRM.  

For speech recognition, the CMU sphinx was adopted. It 
is an open source toolkit for speech recognition and has been 
widely used [16]. The system segments input voice signals 
into words and then compare them with the pre-trained 
model. When a key word is recognized, a corresponding 
command is sent to control the robotic arm. Although speech 

recognition based interface may not be ideal with a noisy 
environment, it does not require any movement from the 
hands and can work well in the indoor quiet environment. 
Thus, it is selected as a complement to the gesture-based 
interface to satisfy the needs of users with different levels of 
mobility impairments.  

B. Object Recognition Module 

In this work, the performance of the object recognition 
module is improved by incorporating the depth information 
of the Kinect camera and a combination of machine learning 
algorithms. An example of the color and depth information 
captured by a Kinect camera is shown as in Fig. 1-B (upper 
left). A depth threshold is applied to segment each object as a 
blob. The region of interest (ROI) consisting of the detected 
object is separated from the original image and resized to 
128x64. The histogram of oriented gradients (HOG) features 
(edge gradients and orientations in Eq. 2 & 3) are extracted 
from each resized image (Fig. 2a).   and   are pixel values, 
  and   are the magnitude and orientation of the gradient, 
respectively. The features are trained and classified using a 
nonlinear Support Vector Machine (SVM) algorithm [17] 
(Fig. 2b).  

   
                                           (a)                       (b)                 

Figure 2. (a) Feature Extraction; (b) SVM classifier for object recognition 
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C. Human Body Part Localization Module 

For different users or different postures of the same user, 
the destination for objects delivery could be different. An 
anthropometric relationship is measured to properly position 
objects to the user. The position of the face and hands are 
tracked and applied to automatically position a cup with a 
straw, mobile phone and other daily living objects to the user. 
For example, the phone is positioned to the position near the 

Figure 1. System Architecture 
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hand, so that the user can dial and then placed near the ear to 
have a private conversation. 

D. iPhone Feedback Module 

This system was integrated with three of the selected 
experimental tasks (phone calling, selfie, and picture taking 
task) using the Apple® iPhone™. To provide sensory input 
for the calling task, we used the iPhone application named 
Sensor Streamer [18]. The signal of the built in Proximity 
sensor is sent as feedback to control the WMRM. When the 
iPhone is within a certain distance (obtained from the 
Proximity sensor) from the users’ ear, the WMRM is 
commanded to stop to begin a phone conversation.  

E. Robotic Manipulator Control Module 

A 6-DOF commercial robotic arm produced by Kinova 
Robotics is adopted and mounted on the left side of an 
electric wheelchair to enable interaction and manipulation. 
The JACO API was programmed under C# environment as a 
wrapper. The speech and gesture recognition, and body part 
tracking results were then sent as commands to control the 
robotic arm. Two control modes were tested: autonomous 
(the objects and human body parts were automatically 
detected and localized) and predefined position control (the 
objects’ and participants’ locations were predefined).  

III. EXPERIMENTAL RESULTS 

Four multistep tasks were designed to test the proposed 
system: 1) drinking with a straw; 2) making a private phone 
call, 3) taking self-portrait or ‘selfie’ photos; and 4) taking 
photos of the surroundings. The settings of the experiments 
are illustrated in Fig. 4. Two Kinect cameras were used: one 
facing the objects of interest on a table and another facing the 
user for gesture recognition and human body part localization 
(Fig. 3a). The four tasks were assessed by a participant 
during five trials.  

        
                        (a)                                               (b) 
Figure 3. Experimental setting and procedure. (a) Experiment setting; (b) 
Operations of the drinking task. 

A. Task 1: Getting the users to drink with a straw 

The drinking task consists of six operations: 1) picking up 
a long straw from a table, 2) putting the straw into a cup, 3) 
picking up the cup, 4) delivering the cup to the front of the 
participant for drinking, 5) holding the cup to the side of the 
participant at rest, and 6) placing the cup back on the table 
when finished (Fig. 3b). Task completion time and the error 
rate for all the six steps are recorded. The task completion 
time begins with operation 1) and ends when operation 6) 
finished. The error rate represents the ratio between the 
number of failed operations and the number of total 
operations (6).  Fig. 4 shows the results that the average task 
completion time over five trials of gesture modality is 
significantly less than voice modality using a predefined 
positioning approach (P = 0.016). A two-way ANOVA 
shows that there was no statistically significant interaction 
between gesture and voice input modalities and robot 
positioning (predefined/autonomous) for task completion 
time (       )   Gesture recognition showed much greater 

error rate than voice control. On average there was not much 
difference in accuracy between autonomous and predefined 
positioning. For predefined positioning using voice control, 
longer completion time resulted in the lowest error rate. A 
time/error correlation coefficient was calculated to determine 
whether lower accuracy was related to longer performance 
time. A negative coefficient value of -0.43 indicates only a 
mild inverse relationship between these two factors. 

 
Figure 4. Task completion time and accuracy for the drinking task 

B. Task 2: Making a private phone call 

      Making a phone call is a basic ADL. However, holding 
the phone to one’s ear is difficult for individuals with upper 
extremity mobility impairments. Either they must wear a 
headset or use the speakerphone function, which lacks 
privacy. This task enables operators to pick up a mobile 
smartphone from the table with the WMRM, putting it in 
dialing position, and then placing it to the user’s ear. The 
completion time recorded in this task was the time duration 
from when participants finished dialing to when the phone 
stopped beside participants’ left ear (Fig. 5). 
      Participants were asked to exchange a random 6-digit 
code of both numbers and letters with the experimenter to 
verify proper hearing through the phone. The number of 
wrong digits received are used to compute errors. From t-test 
results, the task completion time of the automatic positioning 
requires significantly less time than predefined positioning 
(P=0.015) (Fig. 5). In Fig. 5, the predefined positioning with 
gesture control shows longer completion time with lower 
error rate compared to automated positioning using either 
gesture and voice interface. The time/error correlation 
coefficient of 0.011 indicates the higher accuracy is not likely 
a direct consequence of longer completion time. 

 
Figure 5. Task completion time and accuracy for phone calling task 

C. Task 3: Taking pictures of the surroundings 

The picture taking task consists of picking up the 
smartphone within the participant’s reach and allowing them 
to take a picture using camera feature. In Fig. 6, the average 
completion time indicates the time duration to adjust the 
phone’s position to take a satisfactorily framed photograph 
of objects on the wall in front of the participant. The results 
of the Tukey’s post-hoc test indicate that automatic gesture 
control requires significantly more time to complete than the 
other control methods (                   ) . Correct 
positioning of the phone depended on the quality of the 
photo taken by through the camera lens rather than its 
orientation to the participant’s body. 
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D. Task 4: Taking selfie photos 

The selfie photo taking task allows participants to take a 
photo of themselves. It consists of picking up the phone 
from the table, moving it to the user to initiate, and then fine 
position the phone approximately arm’s-length from the 
participant. A remote shutter button was used to take the 
picture once the phone was properly positioned. Fig. 6 
shows a significant difference between the predefined and 
automatic positioning (P = 0.035) when using voice control 
interface. However, there was much less difference between 
positioning methods for gesture control. 

 
Figure 6. Average task completion time (fine positioning of the phone) for 

the selfie and picture taking task 

IV. DISCUSSION AND CONCLUSION 

In this paper, an integrated vision-based system is 
implemented to control a WMRM. The five modules of the 
system architecture worked in concert to enable persons with 
upper extremity mobility impairments to more accessibly and 
effectively perform a few common multistep tasks (i.e. 
drinking, making mobile phone calls and taking 
photographs). Two input modalities (gesture and voice 
recognition) were chosen for users to control the WMRM as 
they are accessible interfaces. A combination of HOG and 
SVM algorithms was applied to automatically detect and 
recognition the daily living objects. The participant’s face 
and hands were recognized and tracked for automatic 
positioning of these objects for proper utilization. Feedback 
from a proximity sensor in the iPhone was used to facilitate 
the phone calling task. When the iPhone is placed near the 
ear, the WMRM automatically stops. 

The pilot experimental results varied among tasks. For the 
straw drinking task verbal control using predefined 
positioning was the slowest but most accurate. There was not 
a strong correlation between slow completion time and less 
errors. There also were no correlations between these two 
factors when making a phone call. Likely, voice control 
tended to be slower than the other input modalities due to a 
delay in processing commands. For making phone calls and 
taking selfie photos, automatic positioning was significantly 
quicker and overall very accurate.  We attribute the proximity 
sensor on the iPhone to assist in ideal placement to the user’s 
ear. For selfie picture taking, the Kinect sensor was able to 
properly position the WMRM due to facial recognition 
programming. For taking photos of external objects at a 
distance, predefined positioning was quicker than automatic 
positioning. Voice control was also more efficient than 
gesturing for making minor adjustments to the camera screen. 

Future work will consist of testing a combination of these 
input modalities. We will also recruit more participants to 
evaluate the usability of the presented system in real-world 
situations. In addition to performance, we will also evaluate 
participants’ acceptance of these features. 
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